足迹
从全能学霸到首席科学家 首席设计师
登录
关灯
护眼
字体:

第50章(第1页)

请退出浏览器阅读模式,否则将导致章节内容缺失及无法阅读下一章。🎁黑料不打烊看片

于是,他就这样冥思苦想了五分钟,同时在草稿纸上进行了简单的演算。

演算,首先就要先列出这个数列的规律。

林晓列出数列的前面几项。

1,1,2,3,5,8,13,……

看到这一个个数列,他忽然一愣,这个数列似乎有些熟悉啊,很快一想,这不就是斐波那契数列吗?

难怪,他看这个通项公式的时候就觉得有点眼熟。

斐波那契数列,是以十二世纪的意呆利数学家莱昂纳多·斐波那契命名的,其在数学中是以递归的方式来定义的:规定第零项和第一项分别为0,1后,其余每项都等于前两项之和,而其中第零项属于特殊项,不算在数列中。

大家可能觉得这个数列看起来平平无奇,不就是这么简单的规律嘛,我也可以创建一个数列嘛。

比如叫张三法外狂徒数列,规定前三项为1,剩余每项都等于前三项之和,或者是规定前四项怎么怎么样。

然而,斐波那契数列之所以特殊,是因为它并没有这么简单,斐波那契数列又被称为黄金分割数列,它的前一项除以后一项的值,会越来越趋近于黄金分割比例,即0618。

另外,这个数列在自然界中也有很多巧合,比如向日葵的种子螺旋排列有99%都遵守斐波那契数列,以及树枝生长规律也符合这个数列。

所以,研究斐波那契数列的数学家们,也有很多。

不过,这个斐波那契素数问题……

林晓就纠结了。

这真的不是数学未解的难题吗?

可这是老师给自己的出的题啊……

总不可能徐老师故意坑他吧?

或者说,他拿错题了?

要不拿手机搜一下?

但想了想,万一这道题已经被解开了,那他不就算是提前知道答案了?

对于他来说,哪怕看到一个思路,对于解题都有很大的帮助。

林晓并不知道这确实是一道未解的难题,因为他又不研究斐波那契数列,能知道这个数列的通项公式都算好的了,哪会了解这些旁枝末节呢?

而且这个问题也并不算出名,华国的中学生普遍知道的数学未解难题,基本上也就局限于哥德巴赫猜想而已,因为华国有一位陈姓数学家解决了哥德巴赫猜想中的“1+2”

问题,所以就出于一种宣传的目的,将这个问题写在了数学课本上,告诉给了华国的中小学生们。

至于那些数学界更加出名的问题,譬如黎曼猜想、bsd猜想、霍奇猜想等等,就没多少中小学生知道了。

于是林晓纠结起来,不知道该怎么处理这道题。

但忽然,他脑海中灵光乍现。

这道题是写在第三张纸上的嘛!

而第一张纸的题显然比第二张纸的题简单,这么来看,这第三张纸的题肯定也比第二张纸的难。

而第二张纸上的题已经足够难了,这第三张纸上只有这么一道题,更加困难,显然就理所应当嘛。

这个逻辑很容易想通嘛!

林晓顿时就不再纠结了,同时也对徐红兵老师肃然起敬。

这种对前后各种题目难度的把控力度真是厉害!

不愧是数学教授。

于是他不再想太多,继续思考起思路。

🎁黑料不打烊看片请退出浏览器阅读模式,否则将导致章节内容缺失及无法阅读下一章。